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Abstract. Low-temperature saturation of the temperature dependence of order paragh@ters
leads to highly nonlinear phase boundarigéx) in (7., x) space where is a secondary field
variable. A typical experimental parameieis the external pressugeor an electric fieldZ which
couple with the square of the order paramet&r,(piing = yx 02). The general characteristics of
T,(x) are derived in mean field theory fof and¢” models. It is shown that in several cases the
functionT,(x) can be found by direct inversion of the functigi(T’) with the parameter mapping
yQP—2 - x.

1. Introduction

Phase transitions in ferroelastics and related materials with long-ranging order parameter
correlations were found to follow Landau-type behaviour over large temperature intervals.
Indeed, hardly any deviation from the predicted temperature evolution of the order parameter
betweenT, and absolute zero temperature was observed in several systems, provided that
theoretical predictions take proper account of quantum saturation at low temperatures [1-9].
The close correlation between Landau theory of displacive phase transitions and the
more general theory of the statistical mechanics ¢f'anodel was pointed out previously
[10-14]. Monte Carlo simulations usingb initio Hamiltonians also show very similar
results as those derived analytically or self-consistently in mean-field theory. In all cases,
the effect of quantum saturation in these order parameters became independent of temperature
at sufficiently low temperatures. This is a fundamental physical feature because the third law
of thermodynamics requires that the entropy changes, and hence order parameter changes, at
absolute zero temperature are zero. A consequence of the order parameter saturation at low
temperatures is a highly nonlinear dependence of the phase transition tempEratrine
secondary control parametersvhich couple with the order paramet@rvia an interaction

energy
Hcoupling & )CQZ.
The effect of quantum saturation on phase diagrams was treated previously [3, 15-19] using a
Landau-type energy expression for the order parameter in the displacive limit
1 0, O B C Absk
G = A6, (coth—- —coth— | 0*+ — Q%+ — 0%+ ——x?
2 ( T TC>Q 29 T ot e
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which leads to the transition temperatd{e(x) as
0
T.(x) = —— ) .
coth (coth(,/ T,.) — kx)
In this paper we argue that similar effects are predicted in self-consistent theory under more

general conditions away from the displacive limit. We also show that the physical origin of
thex-dependence df, is clearly seen in the local deformation of atomic potentials.

2. The model

The theoretical model and mean-field treatment in [1] is reformulated in order to make the
various physical parameters intuitive. The model Hamiltonian is [1]

H=Z§ﬂ%V@w£§)mm—&¥
7 47

V(Q0) = (=207 + 0 Eo
wherem is the effective mass associated with the coordin@ie$, are the conjugate momenta
andV (Q,) is the local potential. The type of transition is determined by the wavevegtor
at which the Fourier transform of the interactiop: assumes its maximum value In the
context of this paper we considgs = 0. The model Hamiltonian represents the claggic
model, although extension to higher-order tegfi§l] and¢” [20—-23] will be discussed later.
The following parameters are now defined for convenience:

Eo
v = Z Vyeyp o= —.
v v

The parameteE, describes the nature of the transitign— 0 in the displacive limit and
g0 — oo in the order—disorder (o/d) Ising limit. The quantum effects depend on the atomic
mass with the saturation temperature [1-3]

17 jv\12

o = 2 ()"

2 kB m
In the Einstein quasi-harmonic approximation the variational equations for the thermodynamic
limit of the ¢* model are [1]

[Bo —1)+0%Q =0
mQ? = —4Eg+v + 3Eo(Q% +0)
where is the temperature-dependent Einstein frequencyvaisd

(80% h coth he2
o = = — .
Y 2mQ 2k T

The phase transition occurs&twhen
kg6 0y 1
o(T) = 2 coth(F) _1

v " 3
which is, here, independent of the displacive deggeePhase transitions are suppressed by
quantum fluctuations if

kg 1
> —,
v 3
The correction of the transition temperature due to quantum effects is
T. — 760 3k g0,

¢ arcth(3kg6;)
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3. The effect of secondary fields

We now consider hoW, changes if a secondary fieldis introduced into the local potential
as a perturbation in the lowest order

U(Q¢) = —2Eo(1 — yx) Qf + EoQ}.
The role ofx is to change the valu@ at the ground state of the potential as

Qf = (L—yx).
The effect of the changes 18,9 is taken into account for the value ®f7,). In the displacive
limit the phase transition occurs @&t = %Qé = % (1 — yx) in the units of our model. This

leads to
kg6 0y 1
. = th =-(1-
o.(x) ” co (Tc(x)> 3( yX)

0\ 0, B
coth(TC(x)) = coth<—Tc(x - 0)) 1—yx)

T.(x) Os/T.(x = 0)
T.(x =0) coth Y{[coth(¥,/T.(x = 0)](1 — yx)}

This result is equivalent to that found by Hayward and Salje [3] or by Gonzalo [4], but has
been derived here in a much wider context. It is valid for all self-consistent solutions and
is independent of the value of the degree of o/d as characterizeg. byhe fundamental
assumptions are the validity of the mean-field theory, the coupling to Einstein oscillators as
dominant dynamical excitations and thelependence of the minimum position of the potential
via 03 o« (1— yx). Similar solutions can be found for other dynamical excitation spectra, for
example a Debye phonon density of states.

It is important to note that under the same premises the square of the saturation value of
the order parameter should follow a linear |@§(x) = Q?(0) — yx. This contrasts with the
law proposed in [4].

In the case of tricritical phase transitions, the macroscopic Gibbs free energy was
previously derived in the same approximation [1] and we conjecture the same for local
potentials of they” model:

2
V(o) = (pT) Eo|-5 07+ 07|+

or

or

p
— Eorx 07

2
wherep = 6 represents a 'tricritical’ potential. Higher values pfare likely to occur in
Slater systems with hydrogen ordering [20]. As a perturbationyxtdependence o¥ (Q,)
can again be limited to the quadratic term@. The critical variances.(x) has the same
x-dependence, but with different numerical prefactors. The critical temperature scalas with
in the same way as in thg model. This is, of course, no longer true if the higher-order terms
in the local potential are also-dependent.

4. How to visualize the phase diagranT,.(x) from the order parameter saturation
Q(T, 6;)

Asimple relationship exists between the temperature depende@&of), ) at constant values
of x and the phase diagraf(x). Let us first consider a displacive, second-order transition
with
coth(6,/T)
coth((6;/ Te(x = 0)))

QX T)=1



L32 Letter to the Editor

for x = 0. Following thex-dependence df.(x) we can write

05 _ 2 05 _ 05 _
COth(ﬂ(x)) =(1— Q:_o(T.(x))) cothm = coth(—TC(x — 0)) 1—yx)

or

Q(T.(x)) = yx.

The last relationship means that the cu@&T') againstl” at a constant value afis iden-
tical to the curvel,.(x) against if the abscissa and ordinate of the plot are interchanged@?&nd
is rescaled ta2?/y. This result is important for practical applications: if the order parameter
is known over a wide temperature interval, including the saturation regime, and the system is
displacive, then one can predict the phase diagram by simply inverting the plot. The role of
the saturation is then the breaking down of the transition temperature near the critical value
v—3ko;, 1 0?

Xe=—""—=—

vy 4
whereQ; is the saturation value of the order parameter in the absence of secondary fields. The
relation betweerT, (x) and Q%(T) is shown graphically in figure 1.

Note that this rescaling approach allows the direct assessment of the displacive limit of
the phase transition. The inverted and rescaled®lat) corresponds to the plot @?(T) at
x = 0 only if the system is in the displacive limit. By the same token, deviations between the
two plots indicate that the transition deviates from the displacive limit.

Similar conclusions can be reached @t models. In this case the scaling exists between
QP~%(T, 0,) andT,.(x). This means that a rather we@kdependence of)(T) atT < T,
as it is typical for tricritical and Slater systems, does not directly translate into a very abrupt
breakdown off.(x) near the critical value aof.. As an example, in figure 3 of Hayward and
Salje [3] the pressure dependence of the transition temperature was shown fat KBPO,.

A critical pressure is found near 1.7 GPa with a linEg1P) dependence which extrapolates to
2.3 GPa at absolute zerf.(= 122— (122/2.3) P) (in kelvin). The equivalent order parameter
dependence witlh = 16 is thenQ « (P(T)/2.3)Y*atT > 30 K which is compatible with
the observed weak temperature dependencg a7 < 0.87, [20].

Although the direct inversion of (T') to obtainT, (x) is valid (provided the value gf is
known) for anyp” model (p > 4), itis incorrect for transitions which are not in the displacive
limit. Even in intermediate cases within the limits of the independent mode approximation,
significant deviations are expected fgr>> 0. Theg* model, for example, gives a crossover
to a tricritical behaviour atg — % The solutions of the self-consistency equations lead to
a macroscopic 2-4-6 Gibbs free energy with a positive fourth-order fedapending on the
value ofeg (B = 1 — 8¢p). In such cases the scaling Bf(x) from Q(T) requires the full
solution of the Landau model and only works as long as the independent mode approximation
is valid. For systems with higher degrees of o/d behaviegir{ %), we do not expect this
approachto be agood approximation, although there seems to be no experimental data available
which could test the applicability of our hypothesis in such cases. (exgdapendence af).

We finally comment on two aspects which were recently discussed in the case of ‘nearly’
displacive phase transitions in framework structures [21-29]. In all transitions, even those far
away from the displacive limit, the functidh.(x) is related to the behaviour of the quadratic
term of the Landau-type free energy expansion. Only in the displacive limit do the other
coefficients become temperature independent. Only in this case is rescaling b&twégen
and Q”~? valid, while in all other cases we expect systematic deviations. The relevance
of configurational entropy contributions can, in this case, simply be evaluated from, for
example the comparison of tHg(p) phase boundary and the temperature evolution of the

N
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Figure 1. The field dependence of the transition temperatayeid temperature dependence of
the square of the order parameter in the displacive limit ofgthenodel ). The two functions
scale by simple inversion of the two axes of the plot. The scaling does not hold for o/d systems. In

¢? models the same scaling is valid for’—2 replacingQ? in this figure.
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order parameter under constant pressure. The second aspect is that the quadratic coefficient
of a general Landau potential results from the self-consistency equations and has the same
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