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Abstract. Low-temperature saturation of the temperature dependence of order parametersQ(T )

leads to highly nonlinear phase boundariesTc(x) in (Tc, x) space wherex is a secondary field
variable. A typical experimental parameterx is the external pressurep or an electric fieldE which
couple with the square of the order parameter (Hcoupling = γ xQ2). The general characteristics of
Tc(x) are derived in mean field theory forφ4 andφp models. It is shown that in several cases the
functionTc(x) can be found by direct inversion of the functionQ(T ) with the parameter mapping
γQp−2→ x.

1. Introduction

Phase transitions in ferroelastics and related materials with long-ranging order parameter
correlations were found to follow Landau-type behaviour over large temperature intervals.
Indeed, hardly any deviation from the predicted temperature evolution of the order parameter
betweenTc and absolute zero temperature was observed in several systems, provided that
theoretical predictions take proper account of quantum saturation at low temperatures [1–9].

The close correlation between Landau theory of displacive phase transitions and the
more general theory of the statistical mechanics of aφ4 model was pointed out previously
[10–14]. Monte Carlo simulations usingab initio Hamiltonians also show very similar
results as those derived analytically or self-consistently in mean-field theory. In all cases,
the effect of quantum saturation in these order parameters became independent of temperature
at sufficiently low temperatures. This is a fundamental physical feature because the third law
of thermodynamics requires that the entropy changes, and hence order parameter changes, at
absolute zero temperature are zero. A consequence of the order parameter saturation at low
temperatures is a highly nonlinear dependence of the phase transition temperatureTc on the
secondary control parametersx which couple with the order parameterQ via an interaction
energy

Hcoupling ∝ xQ2.

The effect of quantum saturation on phase diagrams was treated previously [3, 15–19] using a
Landau-type energy expression for the order parameter in the displacive limit
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which leads to the transition temperatureTc (x) as

Tc(x) = θs

coth−1(coth(θs/Tc)− kx)
.

In this paper we argue that similar effects are predicted in self-consistent theory under more
general conditions away from the displacive limit. We also show that the physical origin of
thex-dependence ofTc is clearly seen in the local deformation of atomic potentials.

2. The model

The theoretical model and mean-field treatment in [1] is reformulated in order to make the
various physical parameters intuitive. The model Hamiltonian is [1]

H =
∑
`

1

2m
p2
` + V (Q`) +

1

4

∑
`,`′

υ``′(Q` −Q`′)
2

V (Q`) = (−2Q2
` +Q4

`)E0

wherem is the effective mass associated with the coordinatesQ`,P` are the conjugate momenta
andV (Q`) is the local potential. The type of transition is determined by the wavevectorq0

at which the Fourier transform of the interactionυ``′ assumes its maximum valueυ. In the
context of this paper we considerq0 = 0. The model Hamiltonian represents the classicφ4

model, although extension to higher-order termsφ6 [1] andφp [20–23] will be discussed later.
The following parameters are now defined for convenience:

υ =
∑
`′
υ``′ ε0 = E0

υ
.

The parameterE0 describes the nature of the transitionε0 → 0 in the displacive limit and
ε0 → ∞ in the order–disorder (o/d) Ising limit. The quantum effects depend on the atomic
mass with the saturation temperature [1–3]

θs = 1

2

h̄

kB

( υ
m

)1/2
.

In the Einstein quasi-harmonic approximation the variational equations for the thermodynamic
limit of the φ4 model are [1]

[(3σ − 1) +Q2]Q = 0

m�2 = −4E0 + υ + 1
2E0(Q

2 + σ)

where� is the temperature-dependent Einstein frequency andσ is

σ = 〈δQ2
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)
.

The phase transition occurs atTc when

σ(Tc) = kBθs

υ
coth

(
θs

Tc

)
= 1

3
which is, here, independent of the displacive degreeε0. Phase transitions are suppressed by
quantum fluctuations if

kBθs

υ
>

1

3
.

The correction of the transition temperature due to quantum effects is

Tc = T (θs=0)
c

3kBθs
arcth(3kBθs)

.
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3. The effect of secondary fields

We now consider howTc changes if a secondary fieldx is introduced into the local potential
as a perturbation in the lowest order

U(Q`) = −2E0(1− γ x)Q2
` +E0Q

4
`.

The role ofx is to change the valueQ0 at the ground state of the potential as

Q2
`0 = (1− γ x).

The effect of the changes inQ`0 is taken into account for the value ofσ(Tc). In the displacive
limit the phase transition occurs atσc = 1

3Q
2
0 = 1

3 (1− γ x) in the units of our model. This
leads to

σc(x) = kBθs

v
coth
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or
Tc(x)

Tc(x = 0)
= θs/Tc(x = 0)

coth−1{[coth(θs/Tc(x = 0))](1− γ x)} .
This result is equivalent to that found by Hayward and Salje [3] or by Gonzalo [4], but has
been derived here in a much wider context. It is valid for all self-consistent solutions and
is independent of the value of the degree of o/d as characterized byε0. The fundamental
assumptions are the validity of the mean-field theory, the coupling to Einstein oscillators as
dominant dynamical excitations and thex-dependence of the minimum position of the potential
viaQ2

0 ∝ (1− γ x). Similar solutions can be found for other dynamical excitation spectra, for
example a Debye phonon density of states.

It is important to note that under the same premises the square of the saturation value of
the order parameter should follow a linear lawQ2

s (x) = Q2
s (0)− γ x. This contrasts with the

law proposed in [4].
In the case of tricritical phase transitions, the macroscopic Gibbs free energy was

previously derived in the same approximation [1] and we conjecture the same for local
potentials of theφp model:
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(
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wherep = 6 represents a ’tricritical’ potential. Higher values ofp are likely to occur in
Slater systems with hydrogen ordering [20]. As a perturbation, thex-dependence ofV (Q`)

can again be limited to the quadratic term inQ`. The critical varianceσc(x) has the same
x-dependence, but with different numerical prefactors. The critical temperature scales withx

in the same way as in theφ4 model. This is, of course, no longer true if the higher-order terms
in the local potential are alsox-dependent.

4. How to visualize the phase diagramTc(x) from the order parameter saturation
Q(T, θs)

A simple relationship exists between the temperature dependence ofQ(T, θs)at constant values
of x and the phase diagramTc(x). Let us first consider a displacive, second-order transition
with

Q2(T ) = 1− coth(θs/T )

coth((θs/Tc(x = 0)))
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for x = 0. Following thex-dependence ofTc(x) we can write

coth

(
θs

Tc(x)

)
= (1−Q2

x=0(Tc(x))) coth
θs

Tc(x = 0)
= coth

(
θs

Tc(x = 0)

)
(1− γ x)

or

Q2(Tc(x)) = γ x.
The last relationship means that the curveQ2(T ) againstT at a constant value ofx is iden-

tical to the curveTc(x) againstx if the abscissa and ordinate of the plot are interchanged andQ2

is rescaled toQ2/γ . This result is important for practical applications: if the order parameter
is known over a wide temperature interval, including the saturation regime, and the system is
displacive, then one can predict the phase diagram by simply inverting the plot. The role of
the saturation is then the breaking down of the transition temperature near the critical value

xc = υ − 3kθs
υγ

= 1

γ
Q2
s

whereQs is the saturation value of the order parameter in the absence of secondary fields. The
relation betweenTc(x) andQ2(T ) is shown graphically in figure 1.

Note that this rescaling approach allows the direct assessment of the displacive limit of
the phase transition. The inverted and rescaled plotTc(x) corresponds to the plot ofQ2(T ) at
x = 0 only if the system is in the displacive limit. By the same token, deviations between the
two plots indicate that the transition deviates from the displacive limit.

Similar conclusions can be reached forQp models. In this case the scaling exists between
Qp−2(T , θs) andTc(x). This means that a rather weakT -dependence ofQ(T ) at T � Tc,
as it is typical for tricritical and Slater systems, does not directly translate into a very abrupt
breakdown ofTc(x) near the critical value ofxc. As an example, in figure 3 of Hayward and
Salje [3] the pressure dependence of the transition temperature was shown for KDP< H2PO4.
A critical pressure is found near 1.7 GPa with a linearTc(P ) dependence which extrapolates to
2.3 GPa at absolute zero (Tc = 122− (122/2.3)P ) (in kelvin). The equivalent order parameter
dependence withp = 16 is thenQ ∝ (P (T )/2.3)1/4 atT > 30 K which is compatible with
the observed weak temperature dependence ofQ atT < 0.8Tc [20].

Although the direct inversion ofQ(T ) to obtainTc(x) is valid (provided the value ofp is
known) for anyφp model (p > 4), it is incorrect for transitions which are not in the displacive
limit. Even in intermediate cases within the limits of the independent mode approximation,
significant deviations are expected forε0 � 0. Theφ4 model, for example, gives a crossover
to a tricritical behaviour atε0 → 1

8. The solutions of the self-consistency equations lead to
a macroscopic 2-4-6 Gibbs free energy with a positive fourth-order termB depending on the
value ofε0 (B = 1− 8ε0). In such cases the scaling ofTc(x) from Q(T ) requires the full
solution of the Landau model and only works as long as the independent mode approximation
is valid. For systems with higher degrees of o/d behaviour (ε0 >

1
8), we do not expect this

approach to be a good approximation, although there seems to be no experimental data available
which could test the applicability of our hypothesis in such cases. (e.g. anx-dependence ofε0).

We finally comment on two aspects which were recently discussed in the case of ‘nearly’
displacive phase transitions in framework structures [21–29]. In all transitions, even those far
away from the displacive limit, the functionTc(x) is related to the behaviour of the quadratic
term of the Landau-type free energy expansion. Only in the displacive limit do the other
coefficients become temperature independent. Only in this case is rescaling betweenT (x)

andQp−2 valid, while in all other cases we expect systematic deviations. The relevance
of configurational entropy contributions can, in this case, simply be evaluated from, for
example the comparison of theTc(p) phase boundary and the temperature evolution of the
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(a)

(b)

Figure 1. The field dependence of the transition temperature (a) and temperature dependence of
the square of the order parameter in the displacive limit of theφ4 model (b). The two functions
scale by simple inversion of the two axes of the plot. The scaling does not hold for o/d systems. In
φp models the same scaling is valid forQp−2 replacingQ2 in this figure.

order parameter under constant pressure. The second aspect is that the quadratic coefficient
of a general Landau potential results from the self-consistency equations and has the same
temperature dependence for displacive and non-displacive phase transitions. That is the reason
why the coth-expression forTc(x) is also valid out of the displacive limit as long as the
dynamical excitations can be described in the Einstein approximation.
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